

#### **PRODUCT DATA & INSTALLATION**

**Bulletin T30-TLV-PDI-26** 

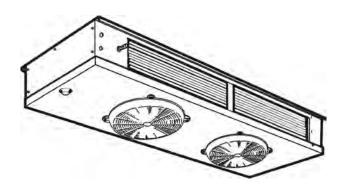
1073478





Questions about this product? Email: evaps@t-rp.com Call: 1-844-893-3222 x520

# **TLV Low Velocity Evaporators**


#### **High Temperature**

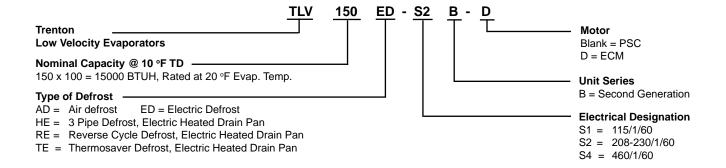
35°F (2°C) or Above Box Temperature and **Medium Temperature** 

28°F to 34°F Box Temperature (-2°C to 1°C)

#### **Defrost Types:**

Air, Electric or Hot Gas Defrost




# **SMART**SPE

FAN MOTOR TECHNOLOGY See Page 14 for details



| CONTENTS                                                               | PAGE    |
|------------------------------------------------------------------------|---------|
| Nomenclature, Features and Options                                     | 2       |
| Capacity Data                                                          | 3       |
| Electrical Data                                                        | 4 - 5   |
| Dimensional Data                                                       | 6       |
| Installation Clearances                                                | 7       |
| Wiring Diagrams - Models with standard PSC Motors                      | 8 - 13  |
| Wiring Diagrams - Models with optional EC Motors / <b>SMART</b> SPEED* | 14 - 18 |
| TXV/ Distributor Nozzle Selection                                      | 19      |
| Defrost Control Positions                                              | 19      |
| Installation Instructions                                              | 20 - 22 |
| Service Parts                                                          | 23      |
| Service Log                                                            | 24      |
| Warranty                                                               | 27      |
| Project Information                                                    | 27      |
| "As Built" Service Parts List                                          | Back    |

#### **NOMENCLATURE**



#### STANDARD FEATURES

- Compatable with Low GWP Refrigerants
- Heavy gauge textured aluminum cabinet construction resists scratches/corrosion and minimizes weight for shipment, installation and service.
- High-efficiency PSC motors.
- Specially designed for quiet operation ideal for prep. rooms.
- Capacity up to 37,000 BTUH nominal.
- Dual refrigeration coils with two-way air distribution reduces air velocities to minimize product dehydration.

- Reduced operating charge with 3/8" OD tubing
- Spacious end compartment allows for easy component installation.
- Attractive and durable high-density polypropylene fan guards.
- Hinged drain pan provides convenient access for cleaning.
- Terminal board allows for easy electrical connections.
- Refrigerants R407A, R407C, R404A/R507, R22 and R134a.

#### **OPTIONAL FEATURES**

- Factory mounted solenoid valve, TXV and thermostat.
- Fin material and special coatings

- EC motors with patented SmartSpeed® Technology. See page 14
- Other options available consult factory



#### **CAPACITY DATA - ALL MODELS**



| High Temp.                  | Model                   |               | 060AD                  | 090AD                   | 120AD                    | 150AD                    | 180AD                    | 220AD                    | 270AD                    | 300AD                    | 340AD                    | 370AD                     |
|-----------------------------|-------------------------|---------------|------------------------|-------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|
| Electric Def                | rost Model              |               | 060ED                  | 090ED                   | 120ED                    | 150ED                    | 180ED                    | 220ED                    | 270ED                    | 300ED                    | 340ED                    | 370ED                     |
| Hot Gas De                  | frost Mode              | I             | 060‡                   | 090‡                    | 120‡                     | 150‡                     | 180‡                     | 220‡                     | 270‡                     | 300‡                     | 340‡                     | 370‡                      |
|                             |                         | R407A         | 5700<br>(1669)         | 8550<br>(2503)          | 11400<br>(3338)          | 14250<br>(4172)          | 17100<br>(5007)          | 20900<br>(6120)          | 25700<br>(7511)          | 28500<br>(8345)          | 32300<br>(9458)          | 35200<br>(10292)          |
|                             | Evap                    | R407C         | 5400<br>(1581)         | 8100<br>(2372)          | 10800<br>(3163)          | 13500<br>(3953)          | 16200<br>(4744)          | 19800<br>(5798)          | 24400<br>(7115)          | 27100<br>(7906)          | 30700<br>(8960)          | 33400<br>(9751)           |
| Capacity<br>BTUH<br>(WATTS) | Temp.<br>25°F<br>(-4°C) | R404A<br>R507 | 6000<br>(1757)<br>5700 | 9000<br>(2635)<br>8550  | 12000<br>(3514)<br>11400 | 15000<br>(4392)<br>14250 | 18000<br>(5271)<br>17100 | 22000<br>(6442)<br>20900 | 27000<br>(7906)<br>25700 | 30000<br>(8784)<br>28500 | 34000<br>(9956)<br>32300 | 37000<br>(10834)<br>35200 |
|                             |                         | R22           | (1669)<br>5400         | (2503)<br>8100          | (3338)                   | (4172)<br>13500          | (5007)<br>16200          | (6120)<br>19800          | (7511)<br>24300          | (8345)<br>27000          | (9458)<br>30600          | (10292)<br>33300          |
| Air Flow                    | CFM (L/s)               |               | (1581)<br>850<br>(401) | (2372)<br>1120<br>(529) | (3163)<br>1500<br>(708)  | (3953)<br>2000<br>(944)  | (4744)<br>2530<br>(1194) | (5798)<br>2785<br>(1314) | (7115)<br>3400<br>(1605) | (7906)<br>4000<br>(1888) | (8960)<br>4370<br>(2062) | (9751)<br>4840<br>(2284)  |
| Refrigeran<br>Charge        |                         | Lbs<br>(Kg)   | 2.6<br>(1.3)           | 4.4<br>(2.2)            | 6.5<br>(3.3)             | 7.3<br>(3.6)             | 7.9<br>(4.0)             | 10.1<br><i>(5.1)</i>     | 9.9<br><i>(5.0)</i>      | 11.9<br>(6.1)            | 15.2<br>(7.7)            | 15.2<br>(7.7)             |
| Std. Unit I<br>(w/o Refriç  | Net Weight<br>gerant)   | Lbs<br>(Kg)   | 90<br><i>(41)</i>      | 105<br><i>(48)</i>      | 139<br><i>(63)</i>       | 158<br><i>(7</i> 2)      | 220<br>(100)             | 235<br>(107)             | 257<br>(117)             | 270<br>(123)             | 280<br>(127)             | 290<br>(132)              |

<sup>&</sup>lt;sup>‡</sup>Refer to Hot Gas Defrost nomenclature and insert appropriate code

**NOTE:** Defrost heaters can be field converted to operate on 208-230/3/60

Capacities rated using 10°F (5.6°C) TD & 100°F (38°C) liquid temperature.

Capacities at other TD within a range of 8 to 15 °F (4.4 to 8.3°C) are directly proportional to TD, or use formula: Capacity = Rated capacity ÷ 10 x TD. For capacities at TD outside of range 8 to 15 °F (4.4 to 8.3°C), or liquid temperature lower than 75°F (24°), consult factory.

Capacities for R407A and R407C are based on mean temperature. Mean temperature is the average temperature between the saturated suction temperature and the temperature feeding the evaporator. For dew point ratings, consult factory.

#### \*\* REFRIGERANT CHARGE CONVERSION FACTORS

| R407C | R404A | R507 | R22  | R134a |
|-------|-------|------|------|-------|
| 0.99  | 0.92  | 0.93 | 1.02 | 1.03  |



#### **ELECTRICAL DATA**

#### Air Defrost Models - 115/1/60

| Model     | No. of |     | Standard | PSC Motor |     |     | Optional | EC Motor |     |
|-----------|--------|-----|----------|-----------|-----|-----|----------|----------|-----|
| Iviodei   | Fans   | FLA | MCA*     | Watts     | MOP | FLA | MCA*     | Watts    | MOP |
| TLV 060AD | 1      | 1.1 | 1.4      | 90        | 15  | 0.8 | 1.0      | 55       | 15  |
| TLV 090AD | 1      | 1.1 | 1.4      | 130       | 15  | 1.6 | 2.0      | 95       | 15  |
| TLV 120AD | 2      | 2.2 | 2.5      | 180       | 15  | 1.6 | 1.8      | 110      | 15  |
| TLV 150AD | 2      | 2.2 | 2.5      | 260       | 15  | 3.2 | 3.6      | 190      | 15  |
| TLV 180AD | 3      | 3.3 | 3.6      | 270       | 15  | 2.4 | 2.6      | 165      | 15  |
| TLV 220AD | 3      | 3.3 | 3.6      | 390       | 15  | 4.8 | 5.2      | 285      | 15  |
| TLV 270AD | 3      | 3.3 | 3.6      | 390       | 15  | 4.8 | 5.2      | 285      | 15  |
| TLV 300AD | 4      | 4.4 | 4.7      | 520       | 15  | 6.4 | 6.8      | 380      | 15  |
| TLV 340AD | 4      | 4.4 | 4.7      | 520       | 15  | 6.4 | 6.8      | 380      | 15  |
| TLV 370AD | 5      | 5.5 | 5.8      | 650       | 15  | 8.0 | 8.4      | 475      | 15  |

FLA = Full Load Amps MCA = Minimum Circuit Ampacity MOP = Maximum Over Current Protection

#### Air Defrost Models - 208-230/1/60

| Model     | No. of |     | Standard | PSC Motor |     |     | Optional | EC Motor |     |
|-----------|--------|-----|----------|-----------|-----|-----|----------|----------|-----|
| Model     | Fans   | FLA | MCA*     | Watts     | MOP | FLA | MCA*     | Watts    | MOP |
| TLV 060AD | 1      | 0.5 | 0.6      | 90        | 15  | 0.5 | 0.6      | 55       | 15  |
| TLV 090AD | 1      | 0.5 | 0.6      | 130       | 15  | 1.0 | 1.3      | 95       | 15  |
| TLV 120AD | 2      | 1.0 | 1.1      | 180       | 15  | 1.0 | 1.1      | 110      | 15  |
| TLV 150AD | 2      | 1.0 | 1.1      | 260       | 15  | 2.0 | 2.3      | 190      | 15  |
| TLV 180AD | 3      | 1.5 | 1.6      | 270       | 15  | 1.5 | 1.6      | 165      | 15  |
| TLV 220AD | 3      | 1.5 | 1.6      | 390       | 15  | 3.0 | 3.3      | 285      | 15  |
| TLV 270AD | 3      | 1.5 | 1.6      | 390       | 15  | 3.0 | 3.3      | 285      | 15  |
| TLV 300AD | 4      | 2.0 | 2.1      | 520       | 15  | 4.0 | 4.3      | 380      | 15  |
| TLV 340AD | 4      | 2.0 | 2.1      | 520       | 15  | 4.0 | 4.3      | 380      | 15  |
| TLV 370AD | 5      | 2.5 | 2.6      | 650       | 15  | 5.0 | 5.3      | 475      | 15  |

FLA = Full Load Amps MCA = Minimum Circuit Ampacity MOP = Maximum Over Current Protection

#### Air Defrost Models - 460/1/60

| Model     | No. of |     | Standard | PSC Motor |     |
|-----------|--------|-----|----------|-----------|-----|
| Wiodei    | Fans   | FLA | MCA*     | Watts     | MOP |
| TLV 060AD | 1      | 0.3 | 0.4      | 90        | 15  |
| TLV 090AD | 1      | 0.3 | 0.4      | 130       | 15  |
| TLV 120AD | 2      | 0.6 | 0.7      | 180       | 15  |
| TLV 150AD | 2      | 0.6 | 0.7      | 260       | 15  |
| TLV 180AD | 3      | 0.9 | 1.0      | 270       | 15  |
| TLV 220AD | 3      | 0.9 | 1.0      | 390       | 15  |
| TLV 270AD | 3      | 0.9 | 1.0      | 390       | 15  |
| TLV 300AD | 4      | 1.2 | 1.3      | 520       | 15  |
| TLV 340AD | 4      | 1.2 | 1.3      | 520       | 15  |
| TLV 370AD | 5      | 1.5 | 1.6      | 650       | 15  |

FLA = Full Load Amps MCA = Minimum Circuit Ampacity

<sup>\*</sup> Electrical wiring is to be sized in accordance with minimum circuit ampacity

<sup>\*</sup> Electrical wiring is to be sized in accordance with minimum circuit ampacity

MOP = Maximum Over Current Protection

<sup>\*</sup> Electrical wiring is to be sized in accordance with minimum circuit ampacity



# **ELECTRICAL DATA** (cont'd)



#### Electric Defrost Models - 115/1/60

|           | No of          |                    |      |       | Fan M |                   | Defrost Heaters |       |     |                  |      |      |     |
|-----------|----------------|--------------------|------|-------|-------|-------------------|-----------------|-------|-----|------------------|------|------|-----|
| Model     | No. of<br>Fans | Standard PSC Motor |      |       |       | Optional EC Motor |                 |       |     | Dell'ost neaters |      |      |     |
|           | 1 4113         | FLA                | MCA* | Watts | MOP   | FLA               | MCA*            | Watts | MOP | Watts            | FLA  | MCA* | MOP |
| TLV 060ED | 1              | 1.1                | 1.4  | 90    | 15    | 0.8               | 1.0             | 55    | 15  | 1880             | 16.4 | 20.4 | 25  |
| TLV 090ED | 1              | 1.1                | 1.4  | 130   | 15    | 1.6               | 2.0             | 95    | 15  | 1880             | 16.4 | 20.4 | 25  |

FLA = Full Load Amps MCA = Minimum Circuit Ampacity MOP = Maximum Over Current Protection

#### Electric Defrost Models - 208-230/1/60

|           |             |     |          | Fan M  | otors - | 208-23 | 0/1/60  |        |     | -            | Onfract I | leaters - |     | Def                                      | frost He | eaters fi | eld |
|-----------|-------------|-----|----------|--------|---------|--------|---------|--------|-----|--------------|-----------|-----------|-----|------------------------------------------|----------|-----------|-----|
| Model     | No. of Fans | St  | andard I | PSC Mo | tor     | 0      | ptional | EC Mot | or  | 208/230/1/60 |           |           |     | converted to operate on 208-<br>230/3/60 |          |           |     |
|           |             | FLA | MCA*     | Watts  | MOP     | FLA    | MCA*    | Watts  | MOP | Watts        | FLA       | MCA*      | MOP | Watts                                    | FLA      | MCA*      | MOP |
| TLV 060ED | 1           | 0.5 | 0.6      | 90     | 15      | 0.5    | 0.6     | 55     | 15  | 1880         | 8.2       | 10.2      | 15  | 1880                                     | 4.9      | 6.1       | 15  |
| TLV 090ED | 1           | 0.5 | 0.6      | 130    | 15      | 1.0    | 1.3     | 95     | 15  | 1880         | 8.2       | 10.2      | 15  | 1880                                     | 4.9      | 6.1       | 15  |
| TLV 120ED | 2           | 1.0 | 1.1      | 180    | 15      | 1.0    | 1.1     | 110    | 15  | 3180         | 13.8      | 17.3      | 20  | 3180                                     | 8.5      | 10.6      | 15  |
| TLV 150ED | 2           | 1.0 | 1.1      | 260    | 15      | 2.0    | 2.3     | 190    | 15  | 3180         | 13.8      | 17.3      | 20  | 3180                                     | 8.5      | 10.6      | 15  |
| TLV 180ED | 3           | 1.5 | 1.6      | 270    | 15      | 1.5    | 1.6     | 165    | 15  | 4540         | 19.7      | 24.7      | 25  | 4540                                     | 12.1     | 15.1      | 20  |
| TLV 220ED | 3           | 1.5 | 1.6      | 390    | 15      | 3.0    | 3.3     | 285    | 15  | 4540         | 19.7      | 24.7      | 25  | 4540                                     | 12.1     | 15.1      | 20  |
| TLV 270ED | 3           | 1.5 | 1.6      | 390    | 15      | 3.0    | 3.3     | 285    | 15  | 4540         | 19.7      | 24.7      | 25  | 4540                                     | 12.1     | 15.1      | 20  |
| TLV 300ED | 4           | 2.0 | 2.1      | 520    | 15      | 4.0    | 4.3     | 380    | 15  | 4540         | 19.7      | 24.7      | 25  | 4540                                     | 12.1     | 15.1      | 20  |
| TLV 340ED | 4           | 2.0 | 2.1      | 520    | 15      | 4.0    | 4.3     | 380    | 15  | 5580         | 24.3      | 30.3      | 35  | 5580                                     | 14.9     | 18.6      | 20  |
| TLV 370ED | 5           | 2.5 | 2.6      | 650    | 15      | 5.0    | 5.3     | 475    | 15  | 5580         | 24.3      | 30.3      | 35  | 5580                                     | 14.9     | 18.6      | 20  |

FLA = Full Load Amps MCA = Minimum Circuit Ampacity MOP = Maximum Over Current Protection

#### Hot Gas Defrost Models - 115/1/60

|               | No. of |                           | Standa         | rd PSC Moto      | r    |     |                           | Option         | al EC Motor      |      |     |
|---------------|--------|---------------------------|----------------|------------------|------|-----|---------------------------|----------------|------------------|------|-----|
| Model         | Fans   | Drain Pan<br>Heater Watts | Heater<br>Amps | Fan Motor<br>FLA | MCA* | МОР | Drain Pan<br>Heater Watts | Heater<br>Amps | Fan Motor<br>FLA | MCA* | МОР |
| TLV 060 HE/RE | 1      | 580                       | 5.0            | 1.1              | 6.3  | 15  | 580                       | 5.0            | 0.8              | 6.6  | 15  |
| TLV 090 HE/RE | 1      | 580                       | 5.0            | 1.1              | 6.3  | 15  | 580                       | 5.0            | 1.6              | 6.6  | 15  |
| TLV 120 HE/RE | 2      | 580                       | 5.0            | 2.2              | 6.3  | 15  | 580                       | 5.0            | 1.6              | 6.6  | 15  |
| TLV 150 HE/RE | 2      | 580                       | 5.0            | 2.2              | 6.3  | 15  | 580                       | 5.0            | 3.2              | 6.6  | 15  |
| TLV 180 HE/RE | 3      | 820                       | 7.1            | 3.3              | 8.9  | 15  | 820                       | 7.1            | 2.4              | 9.4  | 15  |
| TLV 220 HE/RE | 3      | 820                       | 7.1            | 3.3              | 8.9  | 15  | 820                       | 7.1            | 4.8              | 9.4  | 15  |
| TLV 270 HE/RE | 3      | 820                       | 7.1            | 3.3              | 8.9  | 15  | 820                       | 7.1            | 4.8              | 9.4  | 15  |
| TLV 300 HE/RE | 4      | 820                       | 7.1            | 4.4              | 8.9  | 15  | 820                       | 7.1            | 6.4              | 9.4  | 15  |
| TLV 340 HE/RE | 4      | 1020                      | 8.9            | 4.4              | 11.1 | 15  | 1020                      | 8.9            | 6.4              | 11.6 | 15  |
| TLV 370 HE/RE | 5      | 1020                      | 8.9            | 5.5              | 11.1 | 15  | 1020                      | 8.9            | 8                | 11.6 | 15  |

FLA = Full Load Amps MCA = Minimum Circuit Ampacity MOP = Maximum Over Current Protection

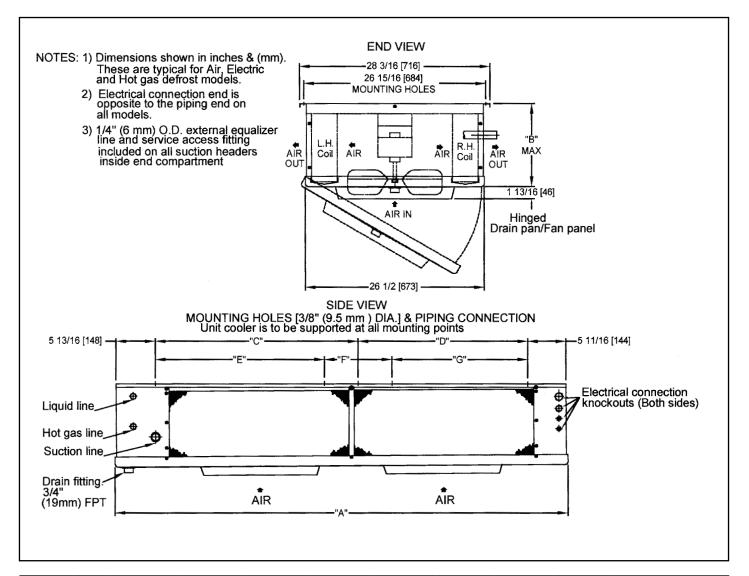
#### Hot Gas Defrost Models - 208-230/1/60

|               | No of          |                           | Standa         | rd PSC Moto      | r    |     | Optional EC Motor         |                |                  |      |     |  |
|---------------|----------------|---------------------------|----------------|------------------|------|-----|---------------------------|----------------|------------------|------|-----|--|
| Model         | No. of<br>Fans | Drain Pan<br>Heater Watts | Heater<br>Amps | Fan Motor<br>FLA | MCA* | МОР | Drain Pan<br>Heater Watts | Heater<br>Amps | Fan Motor<br>FLA | MCA* | МОР |  |
| TLV 060 HE/RE | 1              | 580                       | 2.5            | 0.5              | 3.2  | 15  | 580                       | 2.5            | 0.5              | 2.9  | 15  |  |
| TLV 090 HE/RE | 1              | 580                       | 2.5            | 0.5              | 3.2  | 15  | 580                       | 2.5            | 1.0              | 2.9  | 15  |  |
| TLV 120 HE/RE | 2              | 580                       | 2.5            | 1.0              | 3.2  | 15  | 580                       | 2.5            | 1.0              | 2.9  | 15  |  |
| TLV 150 HE/RE | 2              | 580                       | 2.5            | 1.0              | 3.2  | 15  | 580                       | 2.5            | 2.0              | 2.9  | 15  |  |
| TLV 180 HE/RE | 3              | 820                       | 3.6            | 1.5              | 4.5  | 15  | 820                       | 3.6            | 1.5              | 4.1  | 15  |  |
| TLV 220 HE/RE | 3              | 820                       | 3.6            | 1.5              | 4.5  | 15  | 820                       | 3.6            | 3.0              | 4.1  | 15  |  |
| TLV 270 HE/RE | 3              | 820                       | 3.6            | 1.5              | 4.5  | 15  | 820                       | 3.6            | 3.0              | 4.1  | 15  |  |
| TLV 300 HE/RE | 4              | 820                       | 3.6            | 2.0              | 4.5  | 15  | 820                       | 3.6            | 4.0              | 4.1  | 15  |  |
| TLV 340 HE/RE | 4              | 1020                      | 4.4            | 2.0              | 5.5  | 15  | 1020                      | 4.4            | 4.0              | 5.1  | 15  |  |
| TLV 370 HE/RE | 5              | 1020                      | 4.4            | 2.5              | 5.5  | 15  | 1020                      | 4.4            | 5.0              | 5.1  | 15  |  |

FLA = Full Load Amps MCA = Minimum Circuit Ampacity MOP = Maximum Over Current Protection

<sup>\*</sup> Electrical wiring is to be sized in accordance with minimum circuit ampacity

<sup>\*</sup> Electrical wiring is to be sized in accordance with minimum circuit ampacity


<sup>\*</sup> Electrical wiring is to be sized in accordance with minimum circuit ampacity

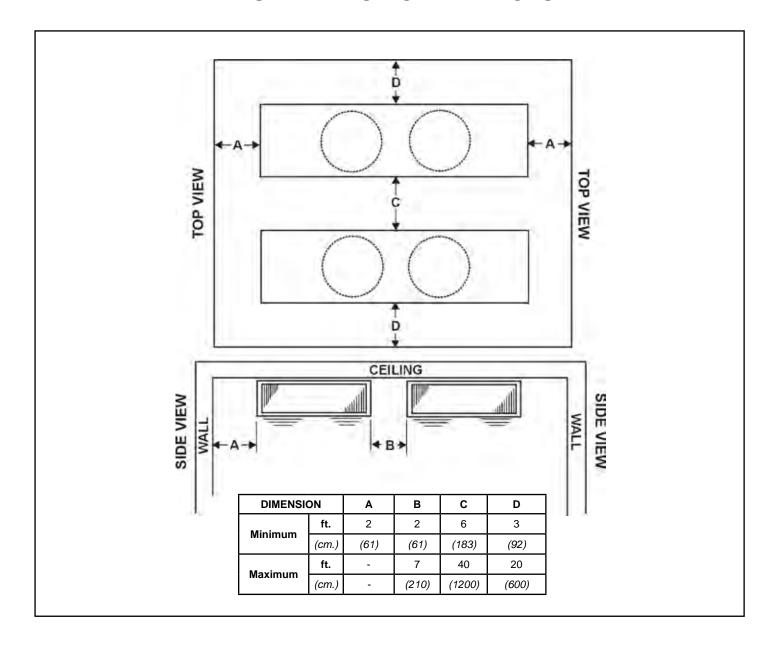
<sup>\*</sup> Electrical wiring is to be sized in accordance with minimum circuit ampacity



# **DIMENSIONAL DATA - Inches (mm)**



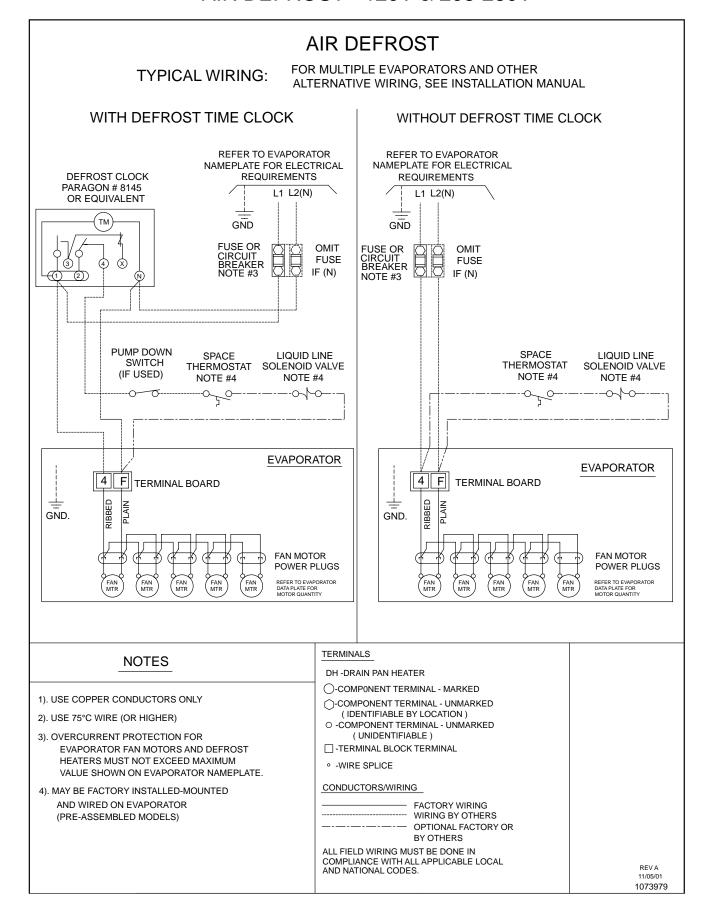



|       |        |                    |               |                    | DIMENS                    | ONAL DATA                        | - INCHES (r      | nm)              |                  |             |                  |
|-------|--------|--------------------|---------------|--------------------|---------------------------|----------------------------------|------------------|------------------|------------------|-------------|------------------|
| MODEL | No. of |                    | Distributor   | Hot Gas            |                           | _                                |                  | M                | ounting Hol      | es          |                  |
|       | Fans   | Connection<br>(OD) | Inlet<br>(OD) | Side Conn.<br>(OD) | Α                         | В                                | С                | D                | E                | F           | G                |
| 060   | 1      | 5/8 (16)           | 1/2 (13)      | 1/2 (13)           | 66 7/8<br>(1699)          | 8 11/16<br><i>(</i> 22 <i>1)</i> | 27 1/2<br>(699)  | 27 1/2<br>(699)  | -                | -           | -                |
| 090   | 1      | 7/8 (22)           | 1/2 (13)      | 1/2 (13)           | 66 7/8<br>(1699)          | 9 9/16<br><i>(</i> 252)          | 27 1/2<br>(699)  | 27 1/2<br>(699)  | -                | -           | -                |
| 120   | 2      | 7/8 (22)           | 1/2 (13)      | 1/2 (13)           | 66 7/8<br>(1699)          | 12 7/16<br>(316)                 | 27 1/2<br>(699)  | 27 1/2<br>(699)  | -                | -           | -                |
| 150   | 2      | 1 1/8 (29)         | 1/2 (13)      | 1/2 (13)           | 66 7/8<br>(1699)          | 14 15/16<br>(378)                | 27 1/2<br>(699)  | 27 1/2<br>(699)  | -                | -           | -                |
| 180   | 3      | 1 1/8 (29)         | 1/2 (13)      | 1/2 (13)           | 92 7/8<br>(2359)          | 14 15/16<br>(378)                | 40 1/2<br>(1029) | 40 1/2<br>(1029) | -                | -           | -                |
| 220   | 3      | 1 1/8 (29)         | 1/2 (13)      | 1/2 (13)           | 92 7/8<br>(2359)          | 14 15/16<br>(378)                | 40 1/2<br>(1029) | 40 1/2<br>(1029) | -                | -           | -                |
| 270   | 3      | 1 1/8 (29)         | * 7/8 (22)    | 5/8 (16)           | 92 7/8<br>(2359)          | 17 7/16<br><i>(44</i> 3)         | 40 1/2<br>(1029) | 40 1/2<br>(1029) | -                | -           | -                |
| 300   | 4      | 1 1/8 (29)         | * 7/8 (22)    | 5/8 (16)           | 92 7/8<br>(2359)          | 17 7/16<br><i>(443)</i>          | 40 1/2<br>(1029) | 40 1/2<br>(1029) | ı                | ı           | -                |
| 340   | 4      | 1 3/8 (35)         | * 7/8 (22)    | 5/8 (16)           | 112 7/8<br><i>(</i> 2867) | 17 7/16<br><i>(443)</i>          | -                | -                | 40 1/2<br>(1029) | 20<br>(508) | 40 1/2<br>(1029) |
| 370   | 5      | 1 3/8 (35)         | * 7/8 (22)    | 5/8 (16)           | 112 7/8<br><i>(</i> 2867) | 17 7/16<br><i>(44</i> 3)         | -                | -                | 40 1/2<br>(1029) | 20<br>(508) | 40 1/2<br>(1029) |

<sup>\*</sup> Reducer supplied to accomodate 1/2" or 7/8" TXV outlet connection.



# RECOMMENDED INSTALLATION CLEARANCES

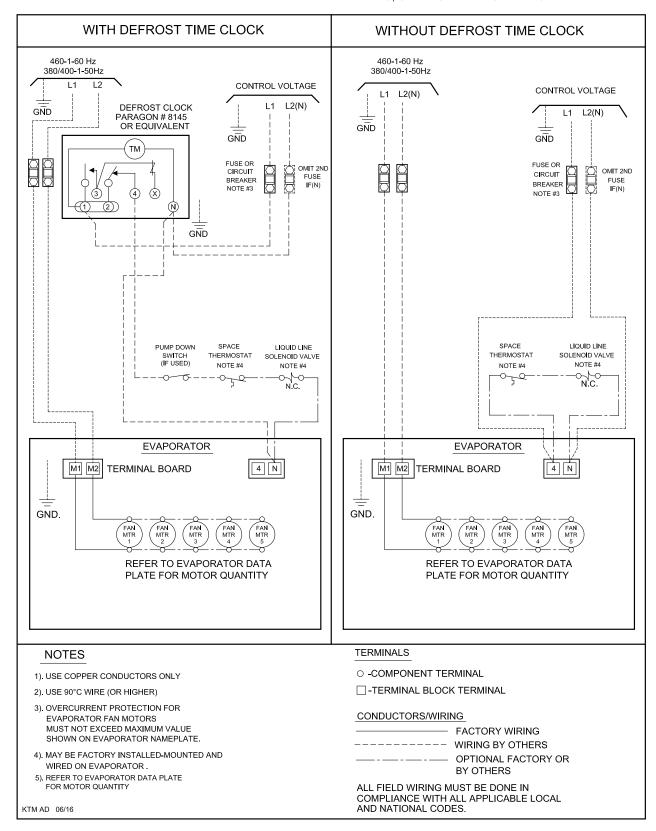








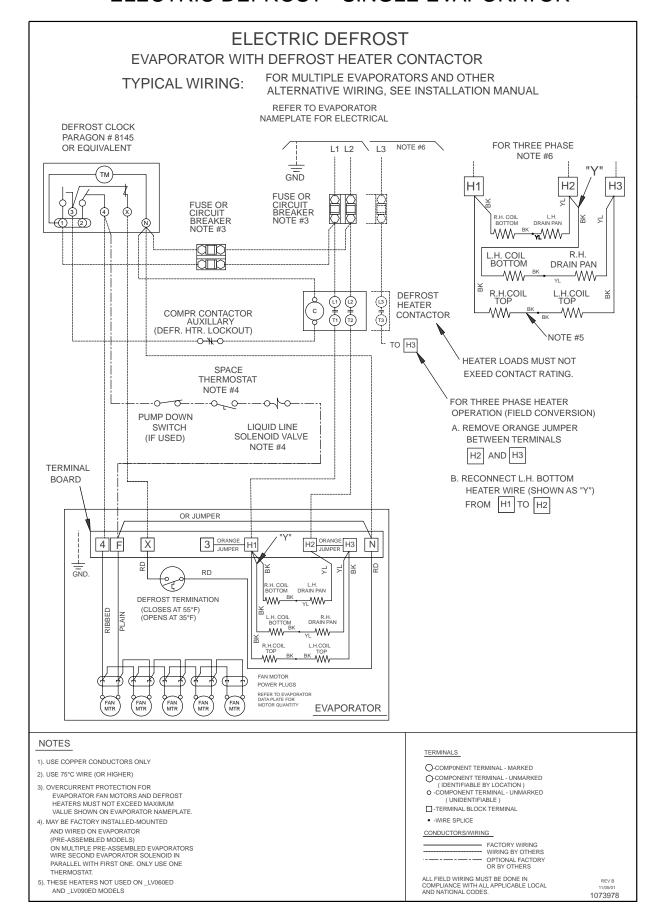

#### AIR DEFROST - 120V & 208-230V





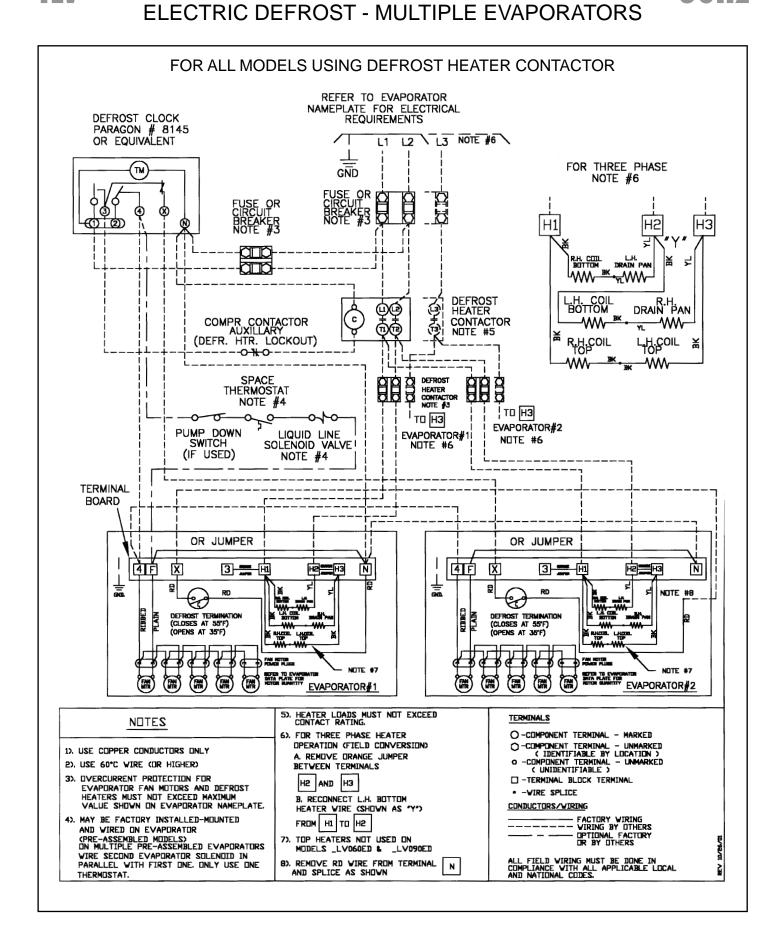



#### AIR DEFROST - 460V


TYPICAL WIRING: FOR MULTIPLE EVAPORATORS AND OTHER ALTERNATIVE WIRING, SEE INSTALLATION MANUAL



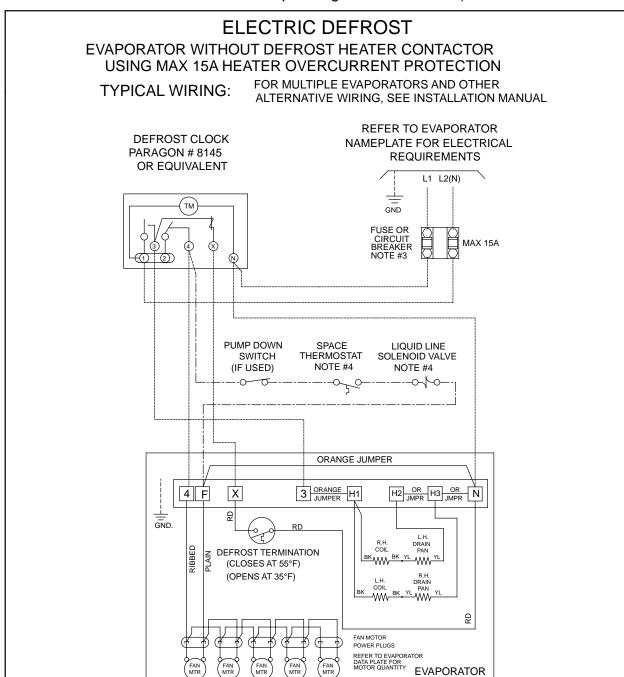



# 60Hz

#### **ELECTRIC DEFROST - SINGLE EVAPORATOR**














ELECTRIC DEFROST - (For optional use on models 060ED and 090ED operating on 208-230/1/60)



#### NOTES

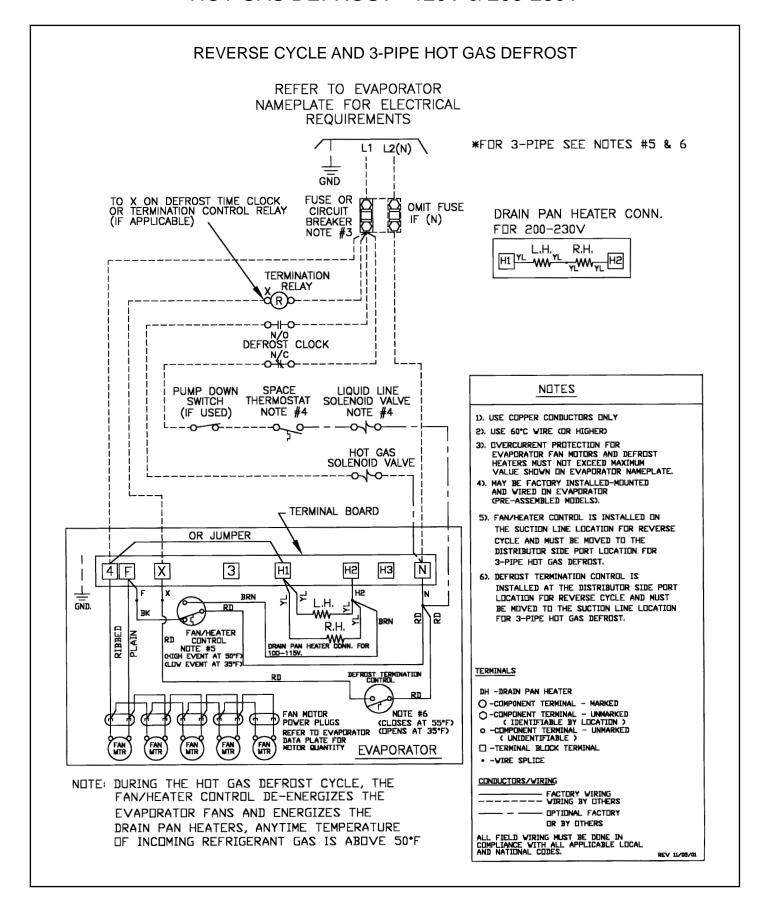
- 1). USE COPPER CONDUCTORS ONLY
- 2). USE 75°C WIRE (OR HIGHER)
- 3). OVERCURRENT PROTECTION FOR EVAPORATOR FAN MOTORS AND DEFROST HEATERS MUST NOT EXCEED MAXIMUM VALUE SHOWN ON EVAPORATOR NAMEPLATE.
- 4). MAY BE FACTORY INSTALLED-MOUNTED
  AND WIRED ON EVAPORATOR
  (PRE-ASSEMBLED MODELS)
  ON MULTIPLE PRE-ASSEMBLED EVAPORATORS
  WIRE SECOND EVAPORATOR SOLEMOID IN
  PARALLEL WITH FIRST ONE. ONLY USE ONE
  THERMOSTAT.

#### TERMINALS

- O-COMPONENT TERMINAL MARKED
- O-COMPONENT TERMINAL UNMARKED (IDENTIFIABLE BY LOCATION) O-COMPONENT TERMINAL - UNMARKED (UNIDENTIFIABLE)
- -TERMINAL BLOCK TERMINAL
- -WIRE SPLICE

#### CONDUCTORS/WIRING

FACTORY WIRING
WIRING BY OTHERS
OPTIONAL FACTORY
OR BY OTHERS


ALL FIELD WIRING MUST BE DONE IN COMPLIANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES.

1074180 REV-A

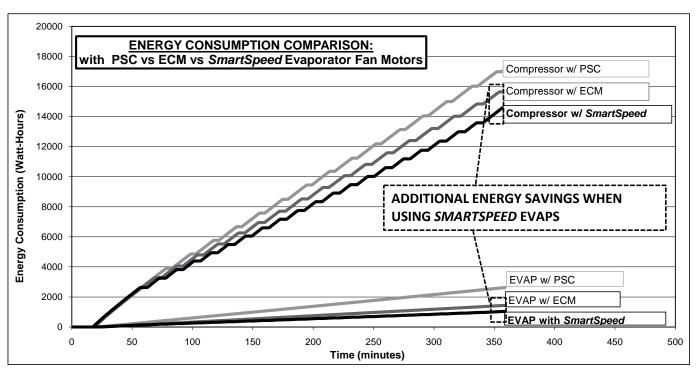




#### HOT GAS DEFROST - 120V & 208-230V










**US Patents** 8,635,883 & 9,151,525

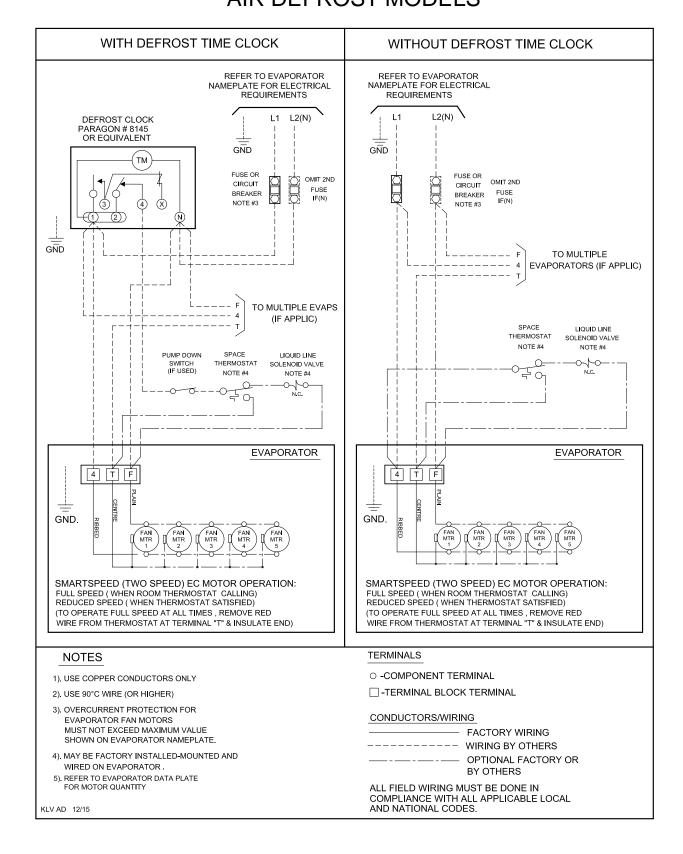
#### **DESIGN FEATURES**

- Standard on all EC Motors
- NO special controls required.
- Refrigeration mode EC motor operates at full speed. Consumption 95 W per motor
- Off Cycle mode EC motor operates at reduced speed. Consumption 25 W per motor.
- Energy saving benefit on motor and compressor wattage consumption:



Note: Data collected on a typical freezer application with a 3HP low temp condensing unit and a 4 fan TLP evaporator. Similar results can be expected with TLV evaporators.

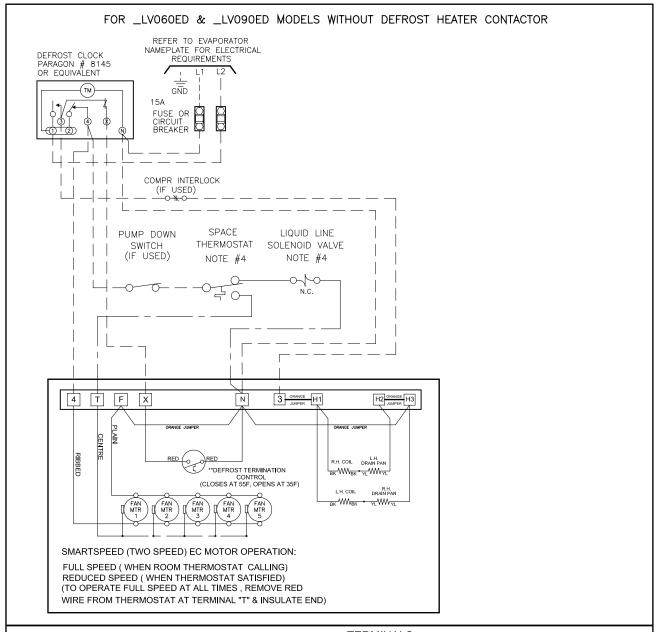
#### **INSTALLATION NOTES**


EC motors are factory wired for SmartSpeed operation on evaporators equipped with a factory installed thermostat.

For SmartSpeed operation on Evaporators without a factory installed thermostat, a field wired SPDT type thermostat is required.



# WIRING DIAGRAM - 120V & 208-230V OPTIONAL EC MOTOR with **SMART**SPEED AIR DEFROST MODELS








# WIRING DIAGRAM - 208-230/1/60 OPTIONAL EC MOTOR with **SMART**SPEED ELECTRIC DEFROST MODELS 060ED AND 090ED





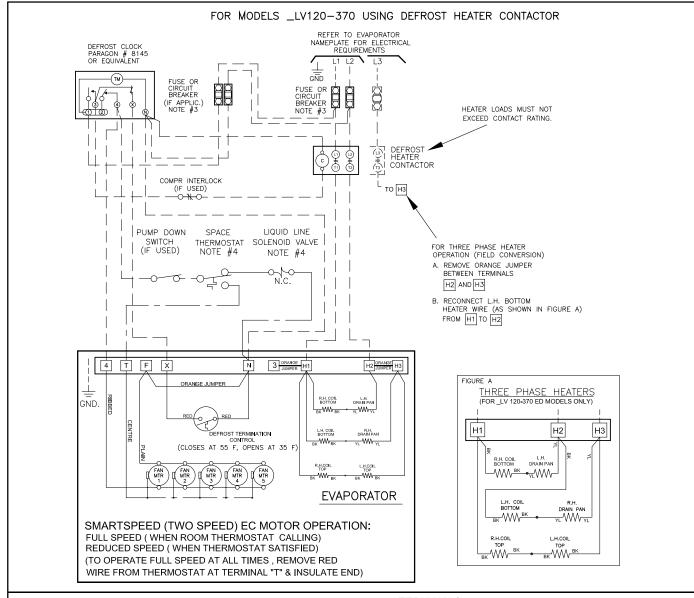
#### **NOTES**

- 1). USE COPPER CONDUCTORS ONLY
- 2). USE 90°C WIRE (OR HIGHER)
- 3). OVERCURRENT PROTECTION FOR EVAPORATOR FAN MOTORS AND DEFROST HEATERS MUST NOT EXCEED MAXIMUM VALUE SHOWN ON EVAPORATOR NAMEPLATE.
- 4). MAY BE FACTORY INSTALLED-MOUNTED AND WIRED ON EVAPORATOR
- 5). REFER TO EVAPORATOR DATA PLATE FOR MOTOR QUANTITY

KLV 060-090 ED 12/15

#### TERMINALS

- -COMPONENT TERMINAL
- -TERMINAL BLOCK TERMINAL


#### CONDUCTORS/WIRING

ALL FIELD WIRING MUST BE DONE IN COMPLIANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES.



# WIRING DIAGRAM - 208-230/1/60 OPTIONAL EC MOTOR with SMARTSPEED ELECTRIC DEFROST MODELS 120ED TO 370ED





#### **NOTES**

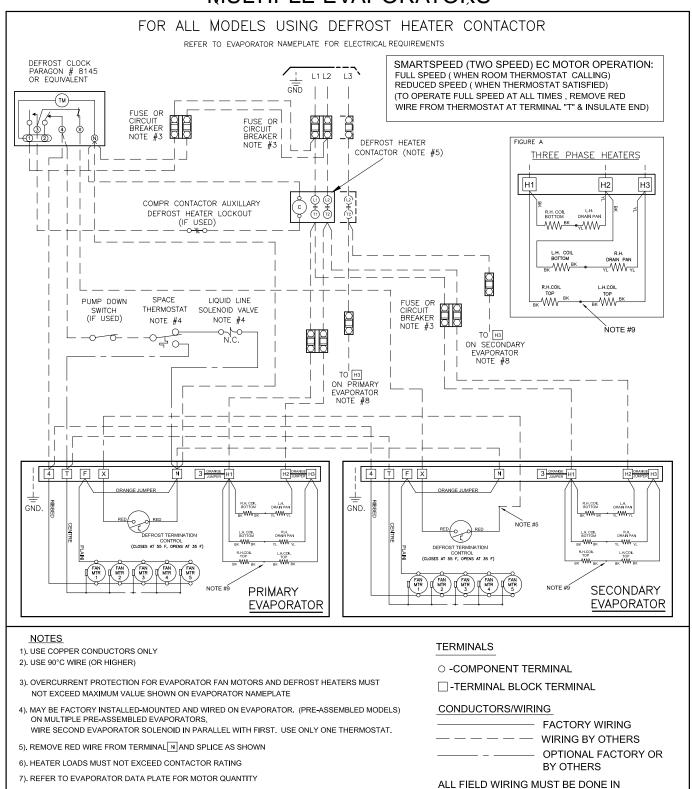
- 1). USE COPPER CONDUCTORS ONLY
- 2). USE 90°C WIRE (OR HIGHER)
- 3). OVERCURRENT PROTECTION FOR EVAPORATOR FAN MOTORS AND DEFROST HEATERS MUST NOT EXCEED MAXIMUM VALUE SHOWN ON EVAPORATOR NAMEPLATE.
- 4). MAY BE FACTORY INSTALLED-MOUNTED AND WIRED ON EVAPORATOR
- 5). REFER TO EVAPORATOR DATA PLATE FOR MOTOR QUANTITY

KLV120-370 ED 12/15

#### TERMINALS

- -COMPONENT TERMINAL
- -TERMINAL BLOCK TERMINAL

#### CONDUCTORS/WIRING


ALL FIELD WIRING MUST BE DONE IN COMPLIANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES.



# WIRING DIAGRAM - 208-230/1/60 OPTIONAL EC MOTOR with **SMART**SPEED



# OPTIONAL EC MOTOR with **SMART**SPEED ELECTRIC DEFROST MODELS -MULTIPLE EVAPORATORS



T30-TLV-PDI-26 - 18 - 15/08/16

8). FOR FIELD CONVERSION TO THREE PHASE HEATERS:

8a). REMOVE ORANGE JUMPER BETWEEN TERMINALS  $\frak{H2}$  AND  $\frak{H3}$ 

8b). RECONNECT LH BOTTOM COIL WIRE FROM HT TO HZ. AS SHOWN IN FIGURE A
9). TOP HEATER COILS ARE NOT INSTALLED ON LV060ED & LV090ED MODELS.

COMPLIANCE WITH ALL APPLICABLE LOCAL

KLV ED CONTACTOR MULTI 12/15

AND NATIONAL CODES.



# THERMOSTATIC EXPANSION VALVE **SELECTION - SPORLAN**



| MODEL NO. | TD °F | R407/A R407C R22 | R404A R507 * |
|-----------|-------|------------------|--------------|
| 000       | 10    | SBFVE-AA-VC      | SBFSE-AA-SC  |
| 060       | 15    | SBFVE-AA-VC      | SBFSE-A-SC   |
| 090       | 10    | SBFVE-AA-VC      | SBFSE-A-SC   |
| 090       | 15    | SBFVE-A-VC       | SBFSE-B-SC   |
| 120       | 10    | SBFVE-A-VC       | SBFSE-A-SC   |
| 120       | 15    | SBFVE-A-VC       | SBFSE-B-SC   |
| 150       | 10    | SBFVE-A-VC       | SBFSE-B-SC   |
| 150       | 15    | SBFVE-B-VC       | SBFSE-B-SC   |
| 180       | 10    | SBFVE-A-VC       | SBFSE-B-SC   |
| 100       | 15    | SBFVE-B-VC       | SBFSE-C-SC   |
| 220       | 10    | SBFVE-B-VC       | SBFSE-B-SC   |
| 220       | 15    | SBFVE-B-VC       | SBFSE-C-SC   |
| 270       | 10    | SBFVE-B-VC       | SBFSE-C-SC   |
| 270       | 15    | SBFVE-C-VC       | SSE-4-C      |
| 300       | 10    | SBFVE-B-VC       | SSE-3-C      |
| 300       | 15    | SBFVE-C-VC       | SSE-4-C      |
| 340       | 10    | SBFVE-B-VC       | SSE-3-C      |
| 340       | 15    | SVE-4-C          | SSE-4-C      |
| 370       | 10    | SVE-4-C          | SSE-4-C      |
| 370       | 15    | SVE-4-C          | SSE-6-C      |

SELECTIONS BASED ON 100°F(37.7°C) LIQUID \* FOR R507 REPLACE "S" WITH "P"

# **DISTRIBUTOR NOZZLE SELECTION**

| STANDARD NOZZLES FACTORY INSTALLED FOR ALL MODELS |                                     |  |
|---------------------------------------------------|-------------------------------------|--|
| T.D.                                              | <b>8°F TO 12°F</b> (4.4°C to 6.6°C) |  |
| EVAP. TEMP. RANGE                                 | 18°F TO 40°F (-7.7°C TO 4.4°C)      |  |
| REFRIGERANT                                       | R407A, R407C, R404A, R507, R22      |  |
| 060                                               | L-3/4                               |  |
| 090                                               | L- 1                                |  |
| 120, 150                                          | L-1 1/2                             |  |
| 180                                               | L- 2                                |  |
| 220                                               | L-2 1/2                             |  |
| 270                                               | G- 2 1/2                            |  |
| 300                                               | G- 3                                |  |
| 340, 370                                          | G-4                                 |  |

SELECTIONS BASED ON 100 °F (37.7 °C) LIQUID

#### **DEFROST CONTROL POSITIONS**

60Hz

# FAN/HEATER CONTROL AND DEFROST TERMINATION CONTROL POSITION

- 1. DEFROST TERMINATION CONTROL THERMOSTAT LOCATION FOR REVERSE CYCLE HOT GAS DEFROST
- 2. FAN/HEATER CONTROL THERMOSTAT MUST BE REINSTALLED HERE FOR 3-PIPE(BYPASS) HOT GAS DEFROST

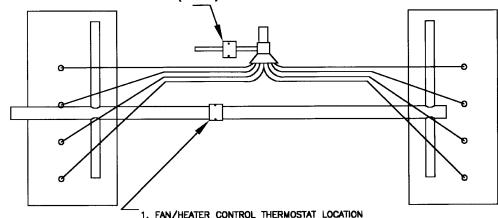



FIGURE 1

2. DEFROST TERMINATION CONTROL THERMOSTAT MUST BE REINSTALLED HERE FOR 3—PIPE(BYPASS) HOT GAS DEFROST

UNIT COOLER WILL LEAVE THE FACTORY WITH THE FAN/HEATER AND DEFROST TERMINATION CONTROL THERMOSTAT INSTALLED IN THE REVERSE CYCLE POSITION\*

FOR REVERSE CYCLE HOT GAS DEFROST

# HOT GAS DEFROST (REVERSE CYCLE)

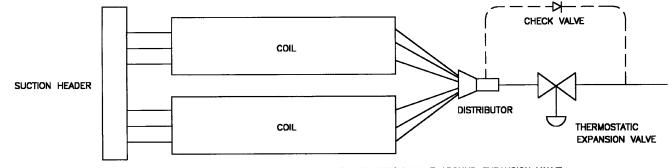



FIGURE 2

UNIT COOLER SHOWING HOT GAS LINE AND CHECK VALVE AROUND EXPANSION VALVE AS USED FOR REVERSE CYCLE HOT GAS DEFROST

#### **HOT GAS DEFROST (3-PIPE OR BYPASS)**

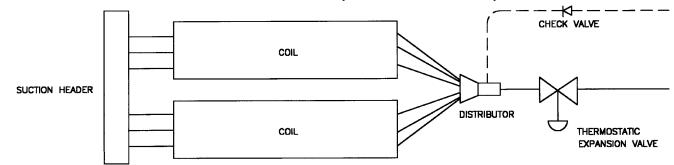



FIGURE 3



#### INSTALLATION INSTRUCTIONS



#### **INSTALLATION**

The installation and start-up of LV Evaporators should only be performed by qualified refrigeration mechanics.

This equipment should be installed in accordance with all applicable codes, ordinances and local by-laws.

#### INSPECTION

Inspect all equipment before unpacking for visible signs of damage or loss. Check shipping list against material received to ensure shipment is complete.

**IMPORTANT:** Remember, you, the consignee, must make any claim necessary against the transportation company. Shipping damage or missing parts, when discovered at the outset, will prevent later unnecessary and costly delays.

If damage or loss during transport is evident, make claim to carrier, as this will be their responsibility, not the manufacturer's.

Should carton be damaged, but damage to equipment is not obvious, a claim should be filed for "concealed damage" with the carrier

**IMPORTANT:** The electrical characteristics of the unit should be checked at this time to make sure they correspond to those ordered and to electrical power available at the job site.

Save all shipping papers, tags and instruction sheets for reference by installer and owner.

#### **APPLICATION**

LV Unit Coolers are designed for use with a variety of popular refrigerants. At room temperatures above 34°F (1.1°C) (and evaporating temps no lower than 24 °F (-4.4°C)) positive coil defrosting (Electric or Hot Gas) is not required. (The air flowing through the coil will accomplish the defrost). At room temperatures of 34°F (1.1°C) and below, positive defrosting is required (either Electric (ED) or Hot Gas (HE, RE, TE) in model nomenclature). These models require the use of (1) Time Clock or equivalent (to initiate and terminate the defrost cycle), and (2) Defrost Termination Control (to prevent unnecessary prolonged heating and steaming of the coil once all the ice and frost has melted), (3) Hot Gas models also utilize a Fan/Heater drain pan control.

The coil must not be exposed to any abnormal atmospheric or acidic environments. This may result in corrosion to the cabinet and possible coil failure (leaks). (Consult manufacturer for optional baked on phenolic protective coatings).

#### LOCATION

The unit location in the room should be selected to ensure uniform air distribution throughout the entire space to be refrigerated. Be sure that the unit does not draw air in, or blow directly out, through an opened door and that the product does not obstruct the free circulation of air. Allow a minimum of 24" clearance at each end. LV Evaporators draw air through the fans and discharge air through both coils.

Consideration should be given to the coil location in order to minimize the piping run length to the condensing unit and floor drain.

#### **EXPANSION VALVE (TXV) SELECTION**

All units require the use of an **externally equalized** expansion valve. (A 1/4" (6 mm) O.D. equalizer line has been provided on the coil) TX valves should **not** be selected strictly by their nominal ton rating. (This rating is based at a specific pressure differential and entering liquid temperature). Since applications will differ it is suggested the following selection procedure be followed.

- Determine actual unit cooler BTUH or KW (thermal).
   The nominal rating is based at 10 °F T.D. (5.5°C)
   (Room Temp. minus Evap. Temp.). Note that a higher / lower operating T.D.will increase / decrease this capacity rating by their direct ratio.
- Determine the pressure drop across the valve by subtracting the suction (evaporating) pressure from the high side liquid pressure. Note: Also subtract the distributor pressure loss (use approx. 25 psig (1.1 bar) for R134a and 35 psig (2.4 bar) for R407A, R407C, R404A, R507 and R22).
- 3. Estimate entering liquid temperature. Temperatures lower than 100°F (37.7°C) increase valve capacity ratings. Refer to valve manufacturer's specs for details.
- Select valve from the valve manufacturer selection charts for the appropriate refrigerant, evaporating temp and pressure drop.
- 5. After following the manufacturer's installation instructions and after the room has reached the desired temperature the valve superheat should be checked. This will confirm that the evaporator is operating properly and performing to maximum efficiency. The superheat should be around 5 to 8 °F (2.7 to 4.4°C) for a 10 to 12°F (5.5 to 6.6°C) T.D. Too high or low a super heat will result in unsatisfactory system performance and possible compressor problems.

#### NOZZLE INSTALLATION

All LV Evaporators have nozzles installed at factory. For nozzle selection refer to selection table. In case it is required to install the nozzle at some point in the future, the nozzle retainer clip (in distributor) must be removed before inserting nozzle. Re-install clip ensuring nozzle is properly in place.



#### **INSTALLATION INSTRUCTIONS** (cont'd)



#### **MOUNTING**

Refer to dimensional drawing for recommended mounting arrangements. Formed mounting channels are provided for flush mounting to the ceiling. Ensure adequate clearance (at least 24" (600 mm)) is provided at each end (to enable access to the electrical and refrig. compartments).

Ensure that the ceiling is level since the drain pan has been sloped for drainage during the defrost cycle.

#### **DRAIN LINE**

The drain line should be run from the drain connection, sloping at least 1/4" (6 mm) per foot. A trap in a warm area outside the room will allow proper draining through the tubing. Connection should be made to proper drainage facilities that comply with local regulations.

To prevent freeze-up when the temperature of the refrigerated space is  $35 \,^{\circ}\text{F}$  ( $1.7 \,^{\circ}\text{C}$ ) or lower, the drain line should be heated along its run inside the cold room. The heated drain line should be insulated. It is recommended that the heater be energized at all times. A heat input of 20 watts per foot in a  $28\,^{\circ}\text{F}$  ( $-2.2\,^{\circ}\text{C}$ ) room, is satisfactory. Drain line heaters are not required for constant room temperature above  $35\,^{\circ}\text{F}$  ( $1.6\,^{\circ}\text{C}$ ).

Ensure that the drain line has sufficient slope for proper drainage (prevention of ice build up/blockage in pan).

#### **PIPING**

Refrigerant line sizes are important and **may not** be the same size as the coil connections. Consult "Recommended refrigerant line sizes" charts in any standard reference book for proper line sizing.

Refrigerant piping and control system should be designed to prevent possible liquid slugging (from oil or refrigerant) of the compressors on start-up after the defrost cycle. On Hot Gas Defrost Systems the suction accumulator should be at least 2.5 times the coils operating charge.

See Dimensional data for line locations. For Reverse Cycle and Hot Gas models and 3-Pipe - see fig. 2 & 3 respectively on page 12 for typical unit piping. These models include a check valve (unmounted) packaged along with the nozzle in the refrig. connection compartment end panel.

#### **WIRING**

Wire system in accordance with governing standards and local codes. See data and wiring diagrams on pages 6 to 10 for wiring arrangement. Electrical wiring is to be sized in accordance with minimum circuit ampacity rating (MCA).

For ease of identifying the proper wiring terminal, unit wiring is color coded and terminal block connections are identified.

# SYSTEM CHECK Before Start-Up:

- 1. All wiring should be in accordance with local codes.
- 2. Refrigerant lines should be properly sized.
- Off cycle defrost and electric defrost systems preferably must include a liqud line solenoid valve and suction accumulator.
- 4. Thorough evacuation and, dehydration has been performed.
- 5. The suction, discharge, and receiver service valves must be open.
- The system preferably must include a liquid line drier moisture indicator and suction filter.
- 7. Pour enough water into the drain pan to allow a good check on drainage and seal the trap.

#### After Start-Up:

- 1. Check the oil level to be sure the oil charge is correct.
- 2. On initial start up the fans do not start until coil temperature is pulled down to approximately 35°F (1.7°C) on the hot gas coil. Also, it is normal for the fans to cycle a few times until the room temperature is pulled down.
- Fan/Heater control and defrost termination control is factory installed for reverse cycle defrost operation. Refer to Fig. 1 on page 14.
- 4. If coil is to be used for 3-pipe (bypass) Hot Gas Defrost, Fan/Heater must be moved from suction line to hot gas inlet line and the defrost termination control moved to the suction line. Refer to Fig. 1 on page 14.
- 5. In general, evaporators running with a TD of 10°F should have a superheat reading of 5 to 8 °F (2.7 to 4.4°C). For evaporators with a higher TD, the superheat should be 8 to 12°F (4.4 to 6.6 °C).
- 6. Heavy moisture loads are usually encountered when starting the system for the first time. This will cause a rapid build-up of frost on the unit cooler. During the initial pull down, we suggest that the frost build-up be watched and defrosted manually as required. This may be done by rotating the inner dial on the timer until the pin in the outer dial is directly opposite the timer pointer. (Paragon 8145-20 Timer by others).
- Observe that the system goes through at least one complete DEFROST CYCLE.

#### **MAINTENANCE**

The unit should be periodically inspected for any dirt or build-up on the fin surface and cleaned if necessary with a soft whisk or brush. Also ensure coils inner and outer drain pans do not have any ice build-up from improper defrost operation. When replacing heater elements first remove heater retainer brackets and heater clips.



#### **SERVICE PARTS**



#### FOR SERVICE PARTS LOOK-UP:

visit: http://www.t-rp.com/serv\_parts.htm

email: parts@t-rp.com call: 1-844-893-3222 x501



# **SERVICE LOG**

| DATE | COMMENTS |
|------|----------|
|      |          |
|      |          |
|      |          |
|      |          |
|      |          |
|      |          |
|      |          |
|      |          |

# **NOTES**

# **NOTES**

#### FINISHED GOODS WARRANTY

The terms and conditions as described below in the General Warranty Policy cover all products manufactured by National Refrigeration.

#### GENERAL WARRANTY POLICY

Subject to the terms and conditions hereof, the Company warrants all Products, including Service Parts, manufactured by the Company to be free of defects in material or workmanship, under normal use and application for a period of one (1) year from the original date of installation, or eighteen (18) months from the date of shipment from the Company, whichever occurs first. Any replacement part(s) so supplied will be warranted for the balance of the product's original warranty. The part(s) to be replaced must be made available in exchange for the replacement part(s) and reasonable proof of the original installation date of the product must be presented in order to establish the effective date of the warranty, failing which, the effective date will be based upon the date of manufacture plus thirty (30) days. Any labour, material, refrigerant, transportation, freight or other charges incurred in connection with the performance of this warranty will be the responsibility of the owner at the current rates and prices then in effect. This warranty may be transferred to a subsequent owner of the product.

#### THIS WARRANTY DOES NOT COVER

(a) Damages caused by accident, abuse, negligence, misuse, riot, fire, flood, or Acts of God (b) damages caused by operating the product in a corrosive atmosphere (c) damages caused by any unauthorized alteration or repair of the system affecting the product's reliability or performance (d) damages caused by improper matching or application of the product or the product's components (e) damages caused by failing to provide routine and proper maintenance or service to the product (f) expenses incurred for the erecting, disconnecting, or dismantling the product (g) parts used in connection with normal maintenance, such as filters or belts (h) products no longer at the site of the original installation (i) products installed or operated other than in accordance with the printed instructions, with the local installation or building codes and with good trade practices (j) products lost or stolen.

No one is authorized to change this WARRANTY or to create for or on behalf of the Company any other obligation or liability in connection with the Product(s). There is no other representation, warranty or condition in any respect, expressed or implied, made by or binding upon the Company other than the above or as provided by provincial or state law and which cannot be limited or excluded by such law, nor will we be liable in any way for incidental, consequential, or special damages however caused.

The provisions of this additional written warranty are in addition to and not a modification of or subtraction from the statutory warranties and other rights and remedies provided by Federal, Provincial or State laws.

#### PROJECT INFORMATION

| System            |                    |
|-------------------|--------------------|
| Model Number      | Date of Start-Up   |
| Serial Number     | Service Contractor |
| Refrigerant       | Phone              |
| Electrical Supply | Fax                |

T30-TLV-PDI-26 - 27 - 15/08/16

# "AS BUILT" SERVICE PARTS LIST

# Service Parts List Label To Be Attached HERE



# NATIONAL REFRIGERATION & AIR CONDITIONING CANADA CORP.

159 Roy Blvd.

Brantford Ontario Canada N3R 7K1 PHONE: (519) 751-0444 800-463-9517 FAX (519) 753-1140 www.t-rp.com





