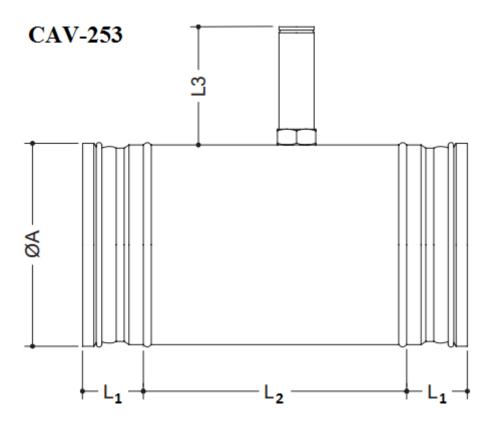


GMC CAV-053 PRODUCT SPECIFICATIONS:

- Chassis Material: Galvanized Steel Sheet. Pressure sensor is made of aluminum.
- Usable of providing fresh air in steady flow rate at ventilating systems. Able to be used for both supply and return air ducts.
- Operated mechanically without any external power, maintaining a constant airflow rate corresponding to the set value regardless of pressure variations in the duct.
- On request, chassis interior can be covered with heat and sound isolation.
- Has two models: Prismatic model (CAV-153) and Circular model (CAV-253).
- Operates at pressure levels between 50 and 1000 Pa and air velocity between 2,2 and 10m/s.

TECHNICAL DETAILS

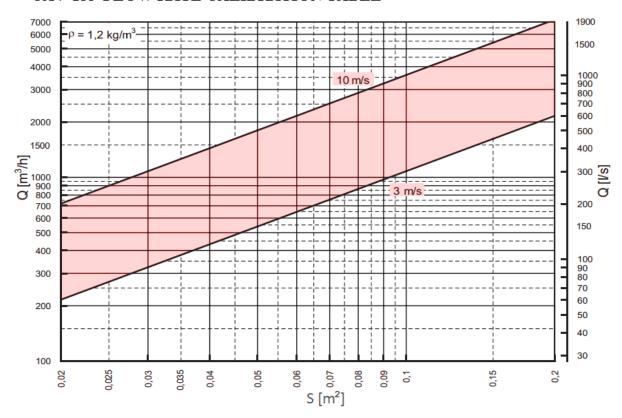


CAV-153 STANDARD SELECTION TABLE

Leng	gth					W [n	nm]				
L [m	m]	150	200	250	300	350	400	450	500	550	600
	100	220	220	220	-	-	-	-	-	-	-
	150	220	220	220	220	220	220	-	-	-	-
	200	220	220	220	220	220	220	385	385	385	385
н	250	-	-	385	385	385	385	385	385	385	385
[mm]	300	-	-	-	385	385	385	385	385	385	385
	400	-	-	-	-	-	385	-	385	-	385
	500	-	-	-	-	-	-	-	425	-	425
	600	-	-	-	-	-	-	-	-	-	470

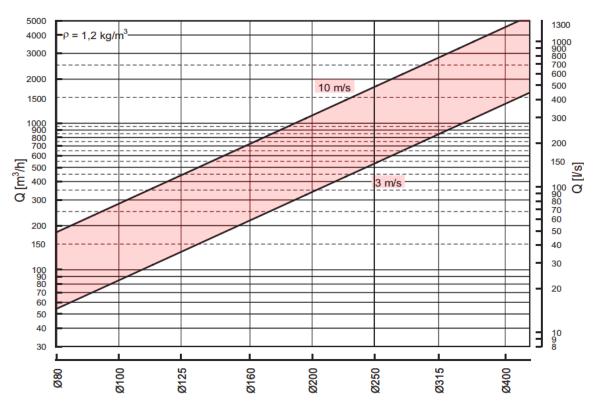
Sensor	Height					W [n	nm]				
H ₂ [m	_	150	200	250	300	350	400	450	500	550	600
	100	-	70	-	70	-	70	-	-	-	-
	150	70	70	70	70	70	70	-	-	-	-
	200	70	70	70	70	70	70	60	60	60	60
н	250	-	-	60	60	60	60	60	60	60	60
[mm]	300	-	-	-	60	60	60	60	60	60	60
	400	-	-	-	-	-	60	-	60	-	60
	500	-	-	-	-	-	-	-	60	-	60
	600	-	-	-	-	-	-	-	-	-	60

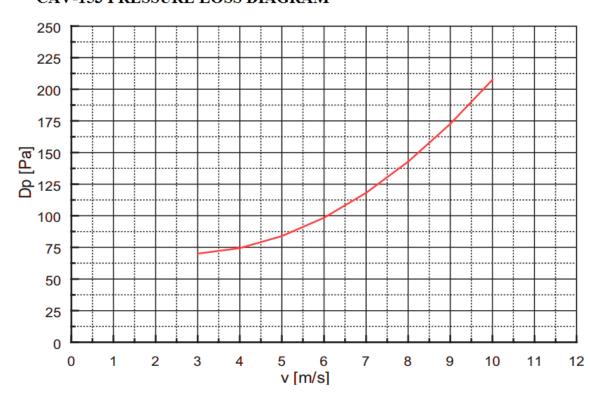
CAV-253 STANDARD SELECTION TABLE


ØN [mm]	80	100	125	160	200	250	315	400
ØA [mm]	78	98	123	158	198	248	313	398
L1 [mm]	40	40	40	40	40	40	60	60
L2 [mm]	120	170	170	240	240	240	220	295
L3 [mm]	70	70	70	70	70	70	100	100

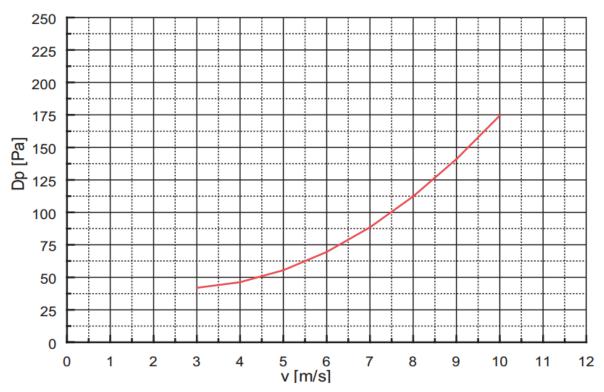
WORKING PRINCIPLE

DATA DIAGRAMS


CAV-153 FLOW RATE CALIBRATION TABLE



CAV-253 FLOW RATE CALIBRATION DIAGRAM


CAV-153 PRESSURE LOSS DIAGRAM

CAV-253 PRESSURE LOSS DIAGRAM

 $Q (m^3/h \text{ oppure } 1/s)$: Air flow rate / Hava debisi

: Effective jet velocity of the air / Efektif jet hava hızı v (m/s)

S (m²) : Effective area / Efektif alan Dp (Pa) : Pressure Loss / Basınç kaybı Ø (mm) : CAV diameters / CAV çapları

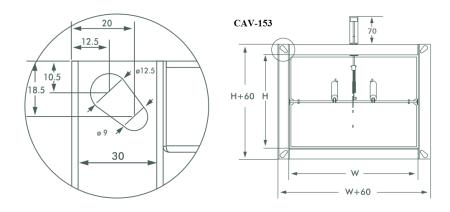
CAV-153/253 NOISE LEVEL TABLES

							ΔPt	= 12	25 Po	ı						ΔPt	= 25	0 Pa	l		
	Vk	\	/			L	w [dE	3/Oc	t]			=			L	√ [dE	3/Oc	t]			=
6:							fm	(Hz)				[dB(A)]				fm ((Hz)				[dB(A)]
Size	(m/s)	(m3/h)	[l/s]	63	125	250	200	1000	2000	4000	8000	LWA [d	63	125	250	200	1000	2000	4000	8000	LWA [d
	3	81	23	35	42	39	37	36	35	34	35	41	39	45	45	43	41	40	39	33	48
100	6	163	45	43	56	51	47	42	38	37	36	47	45	59	56	52	48	46	45	38	55
	9	244	68	46	56	52	46	41	38	26	36	50	49	64	60	58	52	49	47	40	57
	3	128	36	41	43	40	38	37	36	35	37	42	46	46	46	44	42	41	40	40	49
125	6	257	71	52	60	55	52	46	42	41	41	51	55	63	60	56	52	50	49	48	59
	9	385	107	54	59	55	49	44	41	39	40	53	58	67	63	61	55	52	50	49	60
	3	212	59	48	49	46	44	43	42	41	42	50	53	52	52	50	48	47	46	43	55
160	6	423	118	55	62	57	53	48	44	43	42	53	58	65	62	58	54	52	51	46	61
	9	635	176	56	60	56	50	45	42	40	40	54	60	68	64	62	56	53	51	46	61
	3	332	92	52	49	46	44	43	42	41	40	48	57	52	52	50	48	47	46	47	55
200	6	665	185	61	64	59	55	50	46	45	43	55	64	67	64	60	56	54	53	53	63
	9	997	277	63	63	59	53	48	45	43	42	57	67	71	67	55	69	56	54	54	64

							ΔPt	= 12	5 Pa	ı						ΔPt	= 25	0 Pa	ı		
	Vk	\	/			L	w [dE	3/Oc	t]			=			L۱	w [dE	3/Oc	t]			5
C:							fm	(Hz)				[dB(A)]				fm	(Hz)				[dB(A)]
Size	(m/s)	(m3/h)	[l/s]	63	125	250	200	1000	2000	4000	8000	LWA [d	63	125	250	200	1000	2000	4000	8000	LWA [d
	3	521	145	57	52	49	47	46	45	44	43	51	61	55	55	53	51	50	49	49	58
250	6	1043	290	64	65	60	56	51	47	46	43	56	66	68	55	61	57	55	54	53	64
	9	1564	434	66	54	60	54	49	46	44	42	58	69	72	68	66	60	57	55	54	65
	3	831	231	57	52	49	47	46	45	45	41	51	59	49	44	46	47	49	42	47	58
315	6	1661	461	68	69	64	60	55	51	51	46	60	68	66	58	58	57	58	51	55	68
	9	2492	692	68	66	62	56	51	48	47	43	50	69	68	65	62	59	57	55	54	67
	3	1056	293	57	52	49	47	46	45	44	42	51	62	55	55	53	51	50	49	49	58
355	6	2113	587	67	68	63	59	54	50	49	44	59	60	61	57	54	60	58	57	56	67
	9	3169	880	70	68	64	58	53	49	48	44	62	74	76	72	70	64	61	59	58	69
	3	1343	373	59	54	51	49	48	47	46	44	53	66	57	57	55	53	52	51	51	60
400	6	2686	746	68	69	64	60	55	51	50	46	60	73	72	69	65	61	59	58	57	68
	9	4029	1119	74	72	68	62	57	54	52	49	66	80	80	76	74	68	65	63	62	73

							ΔPt	= 50	00 Pa							ΔPt =	= 10	00 P	а		
	Vk	\ \	/			L	w [dE	3/Oc	t]			5			L	v [dE	3/Oc	t]			[
Size							fm	(Hz)				[dB(A)]				fm	(Hz)				[dB(A)]
	(m/s)	(m3/h)	[l /s]	63	125	250	200	1000	2000	4000	8000	LWA [d	63	125	250	200	1000	2000	4000	8000	LWA [d
	3	81	23	45	52	51	50	49	48	45	45	56	62	59	56	56	57	56	54	54	61
100	6	163	45	46	62	59	57	64	53	48	47	59	63	62	62	61	60	59	57	58	65
	9	244	68	55	71	68	63	59	56	53	52	64	71	71	70	67	66	66	61	61	72
	3	128	36	52	53	52	51	50	49	46	45	57	63	60	57	57	58	57	55	54	62
125	6	257	71	54	64	61	59	56	55	50	48	61	65	64	64	63	62	61	59	59	67
	9	385	107	64	74	71	66	62	59	56	54	67	74	74	73	70	69	69	64	63	75
	3	212	59	58	55	54	53	52	51	48	49	59	65	62	59	59	60	59	57	56	64
160	6	423	118	64	70	67	65	62	61	56	56	67	71	70	70	69	68	67	65	65	73
	9	635	176	69	75	72	67	63	60	57	57	68	75	75	74	71	70	70	65	64	76
	3	332	92	61	55	54	53	52	51	48	48	59	65	62	59	59	60	59	57	56	64
200	6	665	185	69	72	69	67	54	53	50	47	69	73	72	72	71	70	69	67	67	75
	9	997	277	73	76	73	68	64	61	58	57	69	76	76	75	72	71	71	67	66	78

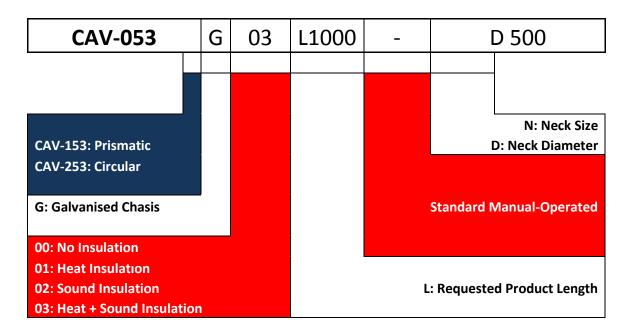
							Pt	= 50	00 Pa	ı						ΔPt =	= 100	00 P	п П		
	Vk	\	/			L	w [dE	3/Oc	t]						Lv	v [dE	3/Oc	t]			=
							fm	(Hz)				[dB(A)]				fm (Hz)				[dB(A)]
Size	(m/s)	(m3/h)	[l /s]	63	125	250	200	1000	2000	4000	8000	LWA [dl	63	125	250	200	1000	2000	4000	8000	LWA [d
	3	521	145	67	60	59	58	57	56	53	53	64	70	67	64	64	65	64	62	61	69
250	6	1043	290	68	70	67	65	62	61	56	55	67	71	70	70	69	68	67	65	65	73
	9	1564	434	77	79	76	71	67	64	61	60	72	79	79	78	75	74	74	69	68	80
	3	831	231	67	59	58	57	56	55	52	52	63	69	66	63	63	64	63	61	60	68
315	6	1661	461	73	74	71	69	66	65	60	59	71	75	74	74	73	72	71	69	69	77
	9	2492	692	83	84	81	76	72	69	66	65	77	84	84	83	80	79	79	74	73	85
	3	1056	293	71	63	62	61	60	59	56	56	67	73	70	67	67	68	67	65	64	72
355	6	2113	587	73	74	71	69	66	65	60	59	71	75	74	74	73	72	71	69	69	77
	9	3169	880	81	82	79	74	70	67	64	63	75	82	82	81	78	77	77	72	71	83
	3	1343	373	63	64	63	62	61	60	57	57	68	74	71	68	68	69	68	66	65	73
400	6	2686	746	77	77	74	72	69	68	63	62	74	78	77	77	76	75	74	62	62	80
	9	4029	1119	82	82	79	74	70	67	64	63	75	82	82	81	78	77	77	72	72	83


AVARAGE NOISE LEVELS BASED ON AIR VELOCITY (A=1m²)

	[L	∆Pt =	125	Pa				ΔF	Pt = 2	250 F	a				ΔF	Pt = :	500 F	a				ΔΡ	t = 1	000	Pa		
Vk		L	w [dE	3/Oc	t]		[[Lv	/ [dB	/Oct]			[]		L	w [dB	J/Oct			[.		ı	Lw [d	B/O	ct]		<u>[</u>
			fm (Hz)			B(A			fm (Hz)			B(A			fm	(Hz)			B(A			fm	(Hz)			dB(A
(m/s)	125	250	200	1000	2000	4000	LWA [d	125	12 25 25 50 50 20 40					LWA [d	125	250	200	1000	2000	4000	LWA [d	125	250	500	1000	2000	4000	LWA [o
3	62	61	60	59	56	52	63	68	68	67	67	65	63	72	74	74	73	73	71	69	78	81	82	81	81	80	77	86
5	68	67	66	65	63	58	70	73	73	72	71	69	67	76	78	79	78	77	76	74	82	84	85	84	84	84	82	90
7	73	73	73	71	69	65	76	79	78	78	76	75	73	82	79	80	81	80	80	78	76	86	88	87	87	86	85	92
10	75	74	74	72	70	67	77	82	81	81	79	78	76	85	85	85	84	84	83	81	89	88	90	89	90	89	88	95

AVARAGE NOISE LEVELS BASED ON CHASSIS (A=1m²)

	[125					ΔF	Pt = 2	250 F	a				ΔΕ	Pt = :	500 I	a				ΔF	Pt = 1	000	Pa		
Vk		Ŀ	w [dE	3/Oct]		=		Lv	/ [dB,	/Oct]			[L	w [dE	3/Oct])]			Lw [d	B/O	ct]		-
			fm	(Hz)			B(A			fm	(Hz)			B(A			fm	(Hz)			B(A			fm	(Hz)			B(A
(m/s)	125	250	500	1000	2000	4000	LWA [d	125	2 7 7 7					LWA [d	125	250	200	1000	2000	4000	LWA [d	125	250	500	1000	2000	4000	LWA [d
	65	64	63	62	59	55	66	71	71	70	70	68	66	75	77	77	76	76	74	72	81	84	85	84	84	83	80	86
	72	71	70	69	67	62	74	77	77	76	75	73	71	80	82	83	82	81	80	78	86	88	89	88	88	88	86	90
	77	77	77	75	73	69	80	83	82	82	80	79	77	86	83	84	85	84	84	82	90	90	92	91	91	90	89	92
	79	78	78	76	74	71	81	86	85	85	83	82	80	89	89	89	88	88	87	85	93	92	94	93	94	93	92	95


MOUNTING DETAIL / MONTAJ DETAYI

ORDER PARAMETERS:

